Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
S. Naveen, ${ }^{\text {a }}$ S. A. Khanum, ${ }^{\text {b }}$
M. Mahendra, ${ }^{\text {a }}$ S. Shashikanth, ${ }^{\text {b }}$
M. A. Sridhar ${ }^{\text {a }}$ and
J. Shashidhara Prasad ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Studies in Physics,
Mansagangotri, University of Mysore, Mysore 570 006, India, and ${ }^{\text {b }}$ Department of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail:
mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.145$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2-Hydroxy-5-methylphenyl)(4-methylphenyl)methanone

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$, the dihedral angle between the two aromatic rings is $52.75(7)^{\circ}$.

Received 3 February 2006
Accepted 3 March 2006

Comment

The competence of benzophenones as chemotherapeutic agents, especially as inhibitors of HIV-1 reverse transcriptase RT, cancer and inflammation, is well established and their chemistry has been studied extensively. In addition, methylsubstituted benzophenones exhibit chemotherapeutical activity against fungi. Due to the importance of various substituents on the benzophenone nucleus, the title compound, (I), was synthesized and its crystal structure is reported here.

(I)

The molecule of (I) is non-planar (Fig. 1). The dihedral angle between the two aromatic rings is $52.75(7)^{\circ}$; this compares with a corresponding value of $56.37(3)^{\circ}$ observed for (4-methoxyphenyl)(2-methylphenyl)methanone, (II) (Mahendra et al., 2005). The C4-C5-C7-O16 and O16$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ torsion angles are $12.9(2)$ and $41.1(2)^{\circ}$, respectively, indicating that the carbonyl group lies nearly in the 2-hydroxy-5-methylphenyl plane but is rather more displaced out of the 4-methylphenyl plane. Bond lengths and angles have normal values and are comparable with those reported for (II). The molecular conformation is stabilized by a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). A detailed study of the biological activity of (I) is underway.

Experimental

4-Methylphenyl-4-methylbenzoate ($0.022 \mathrm{~mol}, 5 \mathrm{~g}$) was thoroughly mixed with montmorillonite $\mathrm{K}-10$ clay in the solid state using a vortex mixer and subjected to microwave irradiation at 40% power for 5 min . The completion of the reaction was monitored by thin-layer chromatography and the product was extracted into ether. Finally, the product was isolated and recrystallized from ethanol to afford the title compound (yield: 90%; m.p. 359 K). Analysis calculated: C 79.69, H 6.25, O 14%.

Figure 1
View of (I), with 50% probability displacement ellipsoids.

Figure 2
The crystal packing in (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \\
& M_{r}=226.26 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.427(5) \AA \\
& b=7.484(9) \AA \\
& c=10.940(13) \AA \\
& \alpha=88.155(3)^{\circ} \\
& \beta=86.638(7)^{\circ} \\
& \gamma=82.765(8)^{\circ} \\
& V=602.0(11) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$D_{x}=1.248 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3046 reflections
$\theta=2.8-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, white
$0.25 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

MacScience DIPLabo 32001
diffractometer
ω scans
Absorption correction: none 3046 measured reflections 1905 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0809 P)^{2}\right. \\
& \quad \quad+0.0862 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.27(3)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 15-\mathrm{C} 4$	$1.354(2)$	$\mathrm{O} 16-\mathrm{C} 7$	$1.237(2)$
$\mathrm{O} 15-\mathrm{C} 4-\mathrm{C} 3$	$118.06(14)$	$\mathrm{O} 16-\mathrm{C} 7-\mathrm{C} 8$	$118.28(14)$
$\mathrm{O} 15-\mathrm{C} 4-\mathrm{C} 5$	$122.84(14)$	$\mathrm{O} 16-\mathrm{C} 7-\mathrm{C} 5$	$120.61(14)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O15-H15 \cdots O16	0.82	1.87	$2.580(4)$	145

H atoms were placed at idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.92-0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA ; U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (carrier atom).

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski and Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the DST, Government of India, for financial assistance under the project $\mathrm{SP} / \mathrm{I} 2 / \mathrm{FOO} / 93$.

References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Mahendra, M., Khanum, S. A., Singh, A., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. \& Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990o2991.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

